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Abstract: In this paper, we consider norms and spreads of RFMLR circulant matrices involving the Fermat,
Mersenne sequences and Gaussian Fibonacci number, respectively. Firstly, we reviewed some properties of the
Fermat, Mersenne sequences, Gaussian Fibonacci number and RFMLR circulant matrices. Furthermore, we give
lower and upper bounds for the spectral norms and spread of these special matrices. Finally, we give several corol-
laries related to norms of Hadamard and Kronecker products of these matrices.
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1 Introduction

Recently, there have been several papers on the
norms of some special matrices [1, 2, 3, 4, 5, 6,
7, 8, 9, 11]. Akbulak [1] found upper and low-
er bounds for the spectral norms of Toeplitz ma-
trices such that aij ≡ Fi−j and bi−j ≡ Li−j .
Solak and Bozkurt [6] have found out upper and
lower bounds for the spectral norms of Cauchy-
Toeplitz and Cauchy-Hankel matrices in the forms
Tn = [ 1

a+(i−j)b ]ni,j=1, Hn = [ 1
a+(i+j)b ]ni,j=1. So-

lak [8, 9] has defined A = [aij ] and B = [bij ] as
n × n circulant matrices, where aij ≡ F(mod(j−i,n))
and bij ≡ L(mod(j−i,n)), then he has given some
bounds for the A and B matrices concerned with
the spectral and Euclidean norms. In [3], the au-
thors give upper and lower bounds for the spectral
norms of matrices A = Cr(Fk,0, Fk,1, · · · , Fk,n−1)
and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1), where
{Fk,n}n∈N and {Lk,n}n∈N are k-Fibonacci and
k-Lucas sequences respectively, and they also
give the bounds for the spectral norms of Kro-
necker and Hadamard products of these matrices
A = Circ

(
F

(k,h)
0 , F

(k,h)
1 , · · · , F (k,h)

n−1

)
and B =

Circ
(
L
(k,h)
0 , L

(k,h)
1 , · · · , L(k,h)

n−1

)
, where F

(k,h)
n and

L
(k,h)
n are (k, h)-Fibonacci and (k, h)-Lucas numbers

respectively[4].
Beginning with Mirsky [12] several author [13,

14, 15, 16, 17, 18, 19] have obtained bounds for the
spread of a matrix.

Lately, some scholars gave the explicit determi-
nant and inverse of the circulant and skew-circulant
matrix involving famous numbers.

For any integer m ≥ 0; let Fm = 22
m

+ 1 be the
mth Fermat number. It is well known that Fm is prime
for m ≤ 4; but there is no other m for which Fm is
known to prime. The Fermat and Mersenne sequences
are defined by the following recurrence relations [20],
respectively:

Fn+1 = 3Fn − 2Fn−1 (1)

Mn+1 = 3Mn − 2Mn−1 (2)

where M0 = 0,M1 = 1,F0 = 2,F1 = 3, for n ≥ 1.
The Gaussian Fibonacci sequence [20, 21] is de-

fined by the following recurrence relations:

Gn+1 = Gn +Gn−1, n ≥ 1 (3)

with the initial conditionG0 = i,G1 = 1. Gn = Fn+
iFn−1, where Fn is the nth Fibonacci number, i =√
−1.

In [26], their Binet forms are given by

Fn = 2n + 1,

Mn = 2n − 1,

Gn = an−bn+(an−1−bn−1)i
a−b ,

where a and b are the roots of the characteristic equa-
tion x2 − x− 1 = 0.
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Lemma 1 Let Fn be the n-th Fermat sequence and
Mn be the n-th Mersenne sequence, Gn be the n-th
Gaussian Fibonacci numbers, then we have

1.
n−1∑
j=0

Fj = Fn + n− 2;

2.
n−1∑
j=0

FjFj+1 = FnFn+1+6Fn+3n−18
3 ;

3.
n−1∑
j=0

F2
j =

4F2
n−1+4Fn−1+3(n−5)

3 ;

4.
n−1∑
j=0

Mj = Mn − n;

5.
n−1∑
j=0

MjMj+1 = MnMn+1−6Mn+3n
3 ;

6.
n−1∑
j=0

M2
j =

4M2
n−1−4Mn−1+3(n−1)

3 ;

7.
n−1∑
j=0

Gj = Gn+1 −G1;

8.
n−1∑
j=0

GjGj+1 = GnGn+1 −GnGn−1 +G1(−1)n

+1
2G0[1− (−1)n];

9.
n−1∑
j=0

G2
j = Gn−1Gn −G2.

Definition 2 [22, 23] A row first-minus-last right
(RFMLR) circulant matrix with the
first row (a0, a1, · · · , an−1), denoted by
RFMLRcircfr(a0, a1, · · · , an−1), meaning a square
matrix of the form

a0 a1 · · · an−2 an−1
an−1 m1 · · · an−3 an−2

... m2
. . . . . .

...

a2
...

. . . . . . a1
a1 a2 − a1 · · · m2 m1


(4)

where

m1 = a0 − an−1,

and

m2 = an−1 − an−2.

It can be seen that the matrix with an arbitrary first
row and the following rule for obtaining any other row
from the previous one: Get the i+1st row by letting the
first element of the ith row minus the last element of
the ith row as the first element of the i+1st row, and

then shifting the elements of the ith row, cyclically,
one position to the right as the rest elements of the
i+1st row.

Obviously, the RFMLR circulant matrix is deter-
mined by its first row, and RFMLR circulant matrix is
a xn + x − 1 circulant matrix [24] and is also a RF-
PrLR circulant matrix [25]. We define Θ(1,−1) as the
basic RFMLR circulant matrix, that is,

Θ(1,−1) =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
1 −1 0 · · · 0


n×n

= RFMLRcircfr(0, 1, 0, · · · , 0) (5)

It is easily verified that g(x) = xn + x − 1 has
no repeated roots in its splitting field and g(x) =
xn + x − 1 is both the minimal polynomial and
the characteristic polynomial of the matrix Θ(1,−1).
In addition, Θ(1,−1) is nonderogatory and satisfies
Θj

(1,−1) = RFMLRcircfr(0, · · · , 0︸ ︷︷ ︸
j

, 1, 0, · · · , 0︸ ︷︷ ︸
n−j−1

) and

Θn
(1,−1) = In −Θ(1,−1).

According to the structure of the powers of the
basic RFMLR circulant matrix Θ(1,−1), it is clear that

A = RFMLRcircfr(a0, a1 · · · , an−1)

=
n−1∑
i=0

aiΘ
i
(1,−1) (6)

Thus, A is a RFMLR circulant matrix if and only
if A = f(Θ(1,−1)) for some polynomial f(x). The

polynomial f(x) =
n−1∑
i=0

aix
i will be called the repre-

senter of the RFMLR circulant matrix A. Because of
Definition 2 and Equation (6), it is clear that A is a
RFMLR circulant matrix if and only if A commutes
with Θ(1,−1), that is, AΘ(1,−1) = Θ(1,−1)A.

In addition to the algebraic properties that can be
easily derived from the representation (6), we mention
that RFMLR circulant matrices have very nice struc-
ture. The product of two RFMLR circulant matrices
is a RFMLR circulant matrix and A−1 is a RFMLR
circulant matrix, too.

In this study, we define matrices of form-
s:let A = RFMLRcircfr(F0,F1, · · · ,Fn−1),
B = RFMLRcircfr(M0,M1, · · · ,Mn−1) and
C = RFMLRcircfr(G0, G1, · · · , Gn−1) be n × n
matrices. Firstly, we give lower and upper bounds for
the spectral norms of these matrices. Furthermore, we
give some corollaries related to norms of Hadamard
and Kronecker products of these matrices.
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Definition 3 [1] Let A = (aij) be an n × n matrix.
The Euclidean (or Frobenius) norm, the spectral nor-
m, the maximum column sum matrix norm, the max-
imum row sum matrix norm of the matrix A are, re-
spectively,

‖A‖F =

(
n∑

i=1

n∑
j=1
|aij |2

) 1
2

,

‖A‖2 =

(
max
1≤i≤n

λi(A
∗A)

) 1
2

,

‖A‖1 = max
1≤j≤n

n∑
i=1
|aij |,

‖A‖∞ = max
1≤i≤n

n∑
j=1
|aij |,

where A∗ denotes the conjugate transpose of A.

The following inequality holds [10]:

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F (7)

Let A = [aij ] and B = [bij ] be n × n matrices.
The Hadamard product of A and B is defined by A ◦
B = [aijbij ]. If ‖ · ‖ is any norm on n×m matrices,
then

‖A ◦B‖ ≤ ‖A‖ · ‖B‖.

Let A and B be arbitrary n × m matrices. Kro-
necker product of A and B is given to be [8]

A⊗B =

 a11B · · · a1mB
...

...
an1B · · · anmB

 .
then

‖A⊗B‖F = ‖A‖F ‖B‖F .

Definition 4 [13] Let A = (aij) be an n × n matrix
with eigenvalues λi, i = 1, 2, . . . , n. The spread of A
is defined as

s(A) = max
i,j
|λi − λj |.

An upper bound for the spread due to Mirsky [12]
states that

s(A) ≤
√

2‖A‖2F −
2

n
|trA|2 (8)

where ‖A‖F denotes the Frobenius norm of A and
trA is the trace of A.

2 On the Norms and Spreads of
RFMLR Circulant Matrices with
the Fermat Sequence

Theorem 5 Let A = RFMLRcircfr(F0,F1, · · · ,
Fn−1), where {Fj}0≤j≤n−1 denote the Fermat se-
quence given by (1). For n ≥ 1, then three kinds of
norms of A are given by

‖A‖1 = ‖A‖∞ = Fn + Fn−1 + n− 4,

and

‖A‖F =

√
1

18
(α1 + α2 + α3),

where

α1 = 24(2n−1)(F2
n−1+Fn−1)−32(F2

n−2+Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136).

Proof: By Definition 3 and Lemma 1, we have

‖A‖1 = ‖A‖∞ = max
1≤j≤n

n∑
i=1

|aij |

=
n−1∑
i=0

Fi + Fn−1 − F0

= Fn + Fn−1 + n− 4.

By Lemma 1, we have

‖A‖2F = n
n−1∑
j=0

F2
j +

n−1∑
j=1

jF2
j − 2

n−2∑
j=1

jFjFj+1

−2(n− 1)F0Fn−1

= n
n−1∑
j=0

F2
j +

n−1∑
k=1

n−1∑
j=n−k

F2
j − 2

n−2∑
k=1

n−2∑
j=n−k−1

FjFj+1

−2(n− 1)F0Fn−1

= n
n−1∑
j=0

F2
j +

n−1∑
k=1

(
n−1∑
j=0

F2
j −

n−k−1∑
j=0

F2
j

)
−2

n−2∑
k=1

(
n−2∑
j=0

FjFj+1 −
n−k−2∑
j=0

FjFj+1

)
−2(n− 1)F0Fn−1

= 1
18(α1 + α2 + α3).

Thus

‖A‖F =

√
1

18
(α1 + α2 + α3) (9)

where

α1 = 24(2n−1)(F2
n−1+Fn−1)−32(F2

n−2+Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136).

ut
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Theorem 6 Let A = RFMLRcircfr(F0,F1, · · · ,
Fn−1), where {Fj}0≤j≤n−1 denote the Fermat se-
quence given by (1), then√

1

18n
(α1 + α2 + α3) ≤ ‖A‖2,

where

α1 = 24(2n−1)(F2
n−1+Fn−1)−32(F2

n−2+Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136),

and
‖A‖2 ≤ 2(Fn + n− 2),

where ‖ · ‖2 is the spectral norm.

Proof: The matrix A is of the form

A =



F0 F1 · · · Fn−2 Fn−1
Fn−1 t1 F1 · · · Fn−2

... t2
. . . . . .

...

F2
...

. . . . . . F1

F1 F2 − F1 · · · t2 t1


(10)

where

t1 = F0 − Fn−1,

and

t2 = Fn−1 − Fn−2.

We know that 1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F from

equivalent norms, where ‖ · ‖F is the Frobenius norm.
By Equation (9), we can get

1√
n
‖A‖F =

√
1

18n
(α1 + α2 + α3),

so √
1

18n
(α1 + α2 + α3) ≤ ‖A‖2,

where

α1 = 24(2n−1)(F2
n−1+Fn−1)−32(F2

n−2+Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136).

On the other hand, supposed that

Q1 =



0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


,

Q2 =



0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . . . . . . . .
...

...

0 0 0
. . . 0 0

0 0 0 · · · 1 0


,

and

Q3 =



0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


,

then

A =
n−1∑
j=0

FjQ
j
1 −

n−2∑
j=1

Fn−j−1Q
j
2 − Fn−1Q3.

We can get

‖A‖2 =

∥∥∥∥ n−1∑
j=0

FjQ
j
1 −

n−2∑
j=1

Fn−j−1Q
j
2 − Fn−1Q3

∥∥∥∥
2

≤
n−1∑
j=0

Fj‖Q1‖j2 +
n−2∑
j=1

Fn−j−1‖Q2‖j2

+Fn−1‖Q3‖2 (11)

Since

QH
1 Q1 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

QH
2 Q2 =


0 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0

 ,
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and

QH
3 Q3 =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
we can get

‖Q1‖2 = ‖Q2‖2 = ‖Q3‖2 = 1.

So the other result is obtained as follows

‖A‖2 ≤
n−1∑
j=1

Fj‖Q1‖j2 +
n−2∑
j=1

Fn−j−1‖Q2‖j2

+Fn−1‖Q3‖2

= 2
n−1∑
j=0

Fj = 2(Fn + n− 2) (12)

Thus the proof is completed. ut

Theorem 7 Let A = RFMLRcircfr(F0,F1, · · · ,
Fn−1), where {Fj}0≤j≤n−1 denote the Fermat se-
quence given by (1), then

s(A) ≤
√

1

9
(α1 + α2 + α3)−

2

n
[(n− 1)Fn−1 − 2n]2,

where

α1 = 24(2n− 1)(F2
n−1 + Fn−1)− 32(F2

n−2 + Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136).

Proof: The trace of A, trA = nF0 − (n − 1)Fn−1.
By Theorem 6 and by Equation (8), we have

s(A) ≤
√

1

9
(α1 + α2 + α3)−

2

n
[(n− 1)Fn−1 − 2n]2,

where

α1 = 24(2n− 1)(F2
n−1 + Fn−1)− 32(F2

n−2 + Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136).

Thus the proof is completed. ut

3 On the Norms and Spreads of
RFMLR Circulant Matrices with
the Mersenne Sequence

Theorem 8 Let B = RFMLRcircfr(M0,M1, · · · ,
Mn−1), where {Mj}0≤j≤n−1 denote Mersenne se-
quence given by (2), then three kinds of norms of B
are given by

‖B‖1 = ‖B‖∞ = Mn + Mn−1 − n,

and

‖B‖F =

√
1

18
(β1 + β2 + β3),

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

Proof: By Definition 3 and Lemma 1, we have

‖B‖1 = ‖B‖∞ = max
1≤j≤n

n∑
i=1
|aij |

=
n−1∑
i=0

Mi + Mn−1 −M0

= Mn + Mn−1 − n.

By Lemma 1, we have

‖B‖2F = n
n−1∑
j=0

M2
j +

n−1∑
j=1

jM2
j − 2

n−2∑
j=1

jMjMj+1

= n
n−1∑
j=0

M2
j +

n−1∑
k=1

n−1∑
j=n−k

M2
j −

2
n−2∑
k=1

n−2∑
j=n−k−1

MjMj+1

= n
n−1∑
j=0

M2
j +

n−1∑
k=1

(
n−1∑
j=0

M2
j −

n−k−1∑
j=0

M2
j

)
−2

n−2∑
k=1

(
n−2∑
j=0

MjMj+1 −
n−k−2∑
j=0

MjMj+1

)
= 1

18(β1 + β2 + β3).

Thus

‖B‖F =

√
1

18
(β1 + β2 + β3) (13)

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

ut
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Theorem 9 Let B = RFMLRcircfr(M0,M1, · · · ,
Mn−1), where {Mj}0≤j≤n−1 denote Mersenne se-
quence given by (2), then√

1

18n
(β1 + β2 + β3) ≤ ‖B‖2,

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16),

and
‖B‖2 ≤ 2(Mn − n),

where ‖ · ‖2 is the spectral norm.

Proof: The matrix B is of the form

B =



M0 M1 · · · Mn−2 Mn−1
Mn−1 d1 M1 · · · Mn−2

... d2
. . . . . .

...

M2
...

. . . . . . M1

M1 d3 · · · d2 d1


(14)

where

d1 = M0 −Mn−1,

d2 = Mn−1 −Mn−2,

d3 = M2 −M1.

We know that 1√
n
‖B‖F ≤ ‖B‖2 ≤ ‖B‖F from

equivalent norms, where ‖ · ‖F is the Frobenius norm.
By Equation(13), we can get

1√
n
‖B‖F =

√
1

18n
(β1 + β2 + β3),

so √
1

18n
(β1 + β2 + β3) ≤ ‖B‖2,

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

On the other hand, according to Q1, Q2 and Q3

defined in Theorem 6, then we can get

B =
n−1∑
j=0

MjQ
j
1 −

n−2∑
j=1

Mn−j−1Q
j
2 −Mn−1Q3.

Because

‖Q1‖2 = ‖Q2‖2 = ‖Q3‖2 = 1,

so the other result is obtained as follows

‖B‖2 ≤
n−1∑
j=1

Mj‖Q1‖j2 +
n−2∑
j=1

Mn−j−1‖Q2‖j2

+Mn−1‖Q3‖2

= 2
n−1∑
j=0

Mj = 2(Mn − n) (15)

Thus the proof is completed. ut

Theorem 10 LetB = RFMLRcircfr(M0,M1, · · · ,
Mn−1), where {Mj}0≤j≤n−1 denote Mersenne se-
quence given by (2), then

s(B) ≤
√

1

9
(β1 + β2 + β3)−

2

n
(n− 1)2M2

n−1,

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

Proof: The trace of B, trB = (1 − n)Mn−1. By
Theorem 9 and by Equation (8), we have

s(B) ≤
√

1

9
(β1 + β2 + β3)−

2

n
(n− 1)2M2

n−1,

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

Thus the proof is completed. ut

4 On the Norms and Spreads of
RFMLR Circulant Matrices with
the Gaussian Fibonacci Number

Theorem 11 Let C = RFMLRcircfr(G0, G1, · · · ,
Gn−1) , where {Gj}0≤j≤n−1 denote Gaussian Fi-
bonacci number given by (3), then three kinds of
norms of C are given by

‖C‖1 = ‖C‖∞ = 2Gn−1 −Gn −G2,
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and

‖C‖F =
√

2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5,

where

γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

γ5 = [(4− n)(−1)n − 3]G0

+[2(n− 3)(−1)n − 1]G1 − nG2.

Proof: By Definition 3 and Lemma 1, we have

‖C‖1 = ‖C‖∞ = max
1≤j≤n

n∑
i=1
|aij |

=
n−1∑
i=0

Gi +Gn−1 −G0

= 2Gn+1 −Gn −G2.

By Lemma 1, we have

‖C‖2F = n
n−1∑
j=0

G2
j +

n−1∑
j=1

jG2
j − 2

n−2∑
j=1

jGjGj+1

−2(n− 1)G0Gn−1

= n
n−1∑
j=0

G2
j +

n−1∑
k=1

n−1∑
j=n−k

G2
j

−2
n−2∑
k=1

n−2∑
j=n−k−1

GjGj+1

−2(n− 1)G0Gn−1

= n
n−1∑
j=0

G2
j +

n−1∑
k=1

(
n−1∑
j=0

G2
j −

n−k−1∑
j=0

G2
j

)
−2

n−2∑
k=1

(
n−2∑
j=0

GjGj+1 −
n−k−2∑
j=0

GjGj+1

)
−2(n− 1)G0Gn−1

= 4GnGn−1 + (2n− 7)GnGn−2 + 2Gn−2Gn−3

−2(n− 1)G0Gn−1 + [(4− n)(−1)n − 3]G0

+[2(n− 3)(−1)n − 1]G1 − nG2,

thus

‖C‖F =√
2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5 (16)

where

γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

γ5 = [(4− n)(−1)n − 3]

+G0[2(n− 3)(−1)n − 1]G1 − nG2.

ut

Theorem 12 Let the C = RFMLRcircfr(G0, G1,
· · · , Gn−1) , where {Gj}0≤j≤n−1 denote Gaussian
Fibonacci number given by (3), then√

1

n

[
2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5

]
≤ ‖C‖2,

where
γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

γ5 = [(4−n)(−1)n−3]G0+[2(n−3)(−1)n−1]G1−nG2,

and

‖C‖2 ≤ 2(Gn+1 −Gn),

where ‖ · ‖2 is the spectral norm.

Proof: The matrix C is of the form

G0 G1 · · · Gn−2 Gn−1
Gn−1 f1 G1 · · · Gn−2

... f2
. . . . . .

...

G2
...

. . . . . . G1

G1 G2 −G1 · · · f2 f1


(17)

where

f1 = G0 −Gn−1,

and

f2 = Gn−1 −Gn−2.

We know that 1√
n
‖C‖F ≤ ‖C‖2 ≤ ‖C‖F from

equivalent norms. By Equation (16) we can get

1√
n
‖C‖F =√

1
n

[
2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5

]
,

so√
1

n

[
2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5

]
≤ ‖C‖2
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where

γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

γ5 = [(4− n)(−1)n − 3]G0

+[2(n− 3)(−1)n − 1]G1 − nG2.

On the other hand, according to Q1, Q2 and Q3

defied in Theorem 6, we can get

C =
n−1∑
j=0

GjQ
j
1 −

n−2∑
j=1

Gn−j−1Q
j
2 −Gn−1Q3.

Because

‖Q1‖2 = ‖Q2‖2 = ‖Q3‖2 = 1,

the other result can be obtained as follows

‖C‖2 ≤
n−1∑
j=0

Gj‖Q1‖j2 +
n−2∑
j=1

Gn−j−1‖Q2‖j2

+Gn−1‖Q3‖2

= 2
n−1∑
j=0

Gj = 2(Gn+1 −Gn) (18)

Thus, the proof is completed. ut

Theorem 13 Let C = RFMLRcircfr(G0, G1, · · · ,
Gn−1), where {Gi}0≤j≤n−1 denote Gaussian Fibi-
nacci number given by (3), then

s(C) ≤
√

4∆1(n)− 2∆2(n)− nG2 − 2n∆3(n),

where

∆1(n) = 2GnGn−1+Gn−2Gn−3−(n− 1)G0Gn−1,

∆2(n) = [(4− n)(−1)n−3]G0+[2(n− 3)(−1)n−1]G1,

∆3(n) = [(n− 1)Gn−1 − nG0]
2.

Proof: The trace of C, trC = nG0 − (n − 1)Gn−1.
By Theorem 12 and by Equation (8), we have

s(C) ≤
√

4∆1(n)− 2∆2(n)− nG2 − 2n∆3(n),

where

∆1(n) = 2GnGn−1+Gn−2Gn−3−(n− 1)G0Gn−1,

∆2(n) = [(4− n)(−1)n−3]G0+[2(n− 3)(−1)n−1]G1,

∆3(n) = [(n− 1)Gn−1 − nG0]
2.

Thus the proof is completed. ut

Corollary 14 Let A = RFMLRcircfr(F0,F1, · · · ,
Fn−1) andB = RFMLRcircfr(M0,M1,· · ·, Mn−1),
where {Fj}0≤j≤n−1 and {Mj}0≤j≤n−1 denote Fer-
mat sequence and Mersenne sequence respectively,
then the spectral norm of Hadamard product ofA and
B is valid the inequality

‖A ◦B‖2 ≤ 4(Fn + n− 2)(Mn − n).

Proof: Since ‖A ◦ B‖2 ≤ ‖A‖2‖B‖2, the proof is
trivial by Theorem 6 and Theorem 9. ut

Corollary 15 Supposed that A =
RFMLRcircfr(F0,F1, · · · ,Fn−1) and B =
RFMLRcircfr(M0,M1, · · · ,Mn−1), where
{Fj}0≤j≤n−1 and {Mj}0≤j≤n−1 denote Fermat
sequence and Mersenne sequence respectively, then
the Frobenius norm of Kronecker product of A and B
is

‖A⊗B‖F =
1

18

√
(α1 + α2 + α3)(β1 + β2 + β3),

where

α1 = 24(2n− 1)(F2
n−1 + Fn−1)− 32(F2

n−2 + Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136),

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16).

Proof: Since ‖A ⊗ B‖F = ‖A‖F ‖B‖F , the proof is
trivial by Theorem 5 and Theorem 8. ut

Corollary 16 Let B = RFMLRcircfr(M0,M1,
· · · ,Mn−1) and C = RFMLRcircfr(G0,G1,· · ·,
Gn−1), where {Mj}0≤j≤n−1 and {Gj}0≤j≤n−1 de-
note Mersenne sequence and Gaussian Fibonac-
ci number respectively, then the spectral norm of
Hadamard product of B and C is valid the inequal-
ity

‖B ◦ C‖2 ≤ 4(Mn − n)(Gn+1 −Gn).

Proof: Since ‖B ◦ C‖2 ≤ ‖B‖2‖C‖2, the proof is
trivial by Theorem 9 and Theorem 12. ut

Corollary 17 Supposed that B =
RFMLRcircfr(M0,M1, · · · ,Mn−1) and C =
RFMLRcircfr(G0, G1, · · · , Gn−1), where
{Mj}0≤j≤n−1 and {Gj}0≤j≤n−1 denote Mersenne
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sequence and Gaussian Fibonacci number respec-
tively, then the Frobenius norm of Kronecker product
of B and C is

‖B ⊗ C‖F =

√
1

18
(β1 + β2 + β3)×√

2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5,

where

β1 = 24(2n− 1)(M2
n−1 −Mn−1)

+2(8− 3n)(3M2
n−1 − 2Mn−1Mn−2),

β2 = 36(n− 4)Mn−1 − 32(M2
n−2 −Mn−2),

β3 = 3(3n2 + 21n+ 16),

γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

and

γ5 = [(4− n)(−1)n − 3]G0

+[2(n− 3)(−1)n − 1]G1 − nG2.

Proof: Since ‖B ⊗ C‖F = ‖B‖F ‖C‖F , the proof is
trivial by Theorem 8 and Theorem 11. ut

Corollary 18 Let A = RFMLRcircfr(F0,F1, · · · ,
Fn−1) and C = RFMLRcircfr(G0,G1,· · ·, Gn−1),
where {Fj}0≤j≤n−1 and {Gj}0≤j≤n−1 denote Fer-
mat sequence and Gaussian Fibonacci number re-
spectively, then the spectral norm of Hadamard prod-
uct of A and C is valid the inequality

‖A ◦ C‖2 ≤ 4(Fn + n− 2)(Gn+1 −Gn).

Proof: Since ‖A ◦ C‖2 ≤ ‖A‖2‖C‖2, the proof is
trivial by Theorem 6 and Theorem 12. ut

Corollary 19 Supposed that A =
RFMLRcircfr(F0,F1, · · · ,Fn−1) and C =
RFMLRcircfr(G0, G1, · · · , Gn−1), where
{Fj}0≤j≤n−1 and {Gj}0≤j≤n−1 denote Fermat se-
quence and Gaussian Fibonacci number respectively,
then the Frobenius norm of Kronecker product of A
and C is

‖A⊗ C‖F =

√
1

18
(α1 + α2 + α3)√

2(2γ1 + γ3 − γ4) + (2n− 7)γ2 + γ5,

where

α1 = 24(2n− 1)(F2
n−1 + Fn−1)

−32(F2
n−2 + Fn−2),

α2 = 2(14− 6n)(Fn−1Fn + 6Fn−1),

α3 = 6(20− 12n)Fn−1 − 3(9n2 − 33n+ 136),

γ1 = GnGn−1,

γ2 = GnGn−2,

γ3 = Gn−2Gn−3,

γ4 = (n− 1)G0Gn−1,

and

γ5 = [(4− n)(−1)n − 3]G0

+[2(n− 3)(−1)n − 1]G1 − nG2.

Proof: Since ‖A ⊗ C‖F = ‖A‖F ‖C‖F , the proof is
trivial by Theorem 5 and Theorem 11. ut
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